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Results for the structural properties of random heaps of hard disks
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The average angle of repose and the packing density of random planar heaps of hard disks falling bal-
listically onto a sticky base line, where the first layer of disks is quenched in random positions, are com-
puted for heaps with a small fixed number of gaps in the base layer. The results we find appear to be al-
most independent of the size of the heap and they agree with those obtained from computer simulations

of large systems.

PACS number(s): 05.70.—a, 46.10.+z

Random packing of hard spheres or disks has been
studied for many years, and more recently in connection
with a variety of nonequilibrium growth and aggregation
models for granular media [1]. Here we study some static
structural properties of a very simple kind of heap which
has recently been considered by Acharyya in a numerical
simulation [2]. It is a planar vertical heap made of hard
disks (of unit diameter) according to the following rules.
One first performs a random sequential deposition of unit
segments on the line, up to saturation, and each deposited
segment is chosen as the horizontal diameter of a vertical
disk. These disks, frozen at their random positions, con-
stitute the base layer of the heap. Other disks then fall
downward with zero kinetic energy, and when they touch
disks already settled in lower layers, seek for stable posi-
tions under gravity and then remain fixed. In the numeri-
cal simulation of Ref. [2], a typical heap contains approx-
imately 170 disks, and statistical averages are taken on
about 100 depositions. The packing density p and the re-
pose angle ® have been measured, with the results
p=0.795+0.01 and ®=51.75°%+3.00°.

We show here that these data are in good agreement
with the values we obtain for heaps of moderate size.
Considering heaps where the number N of gaps in the
base layer is fixed, we perform statistical averages (involv-
ing in particular fluctuations of the total number of disks
in the heap) which appear to be almost independent of
Ng when Ng varies from 1 to 3. The repose angle ap-
pears to be practically fixed at the value ®=52°, and the
density, which is more sensitive to the chosen definition
for such small heaps, is found to be in the range p=0.79
and 0.82.

The computation can be illustrated on the smallest
heap, shown in Figs. 1(a) and 1(b), where an arbitrary gap
R separates the two disks of the base layer. Case (a),
where the heap contains 3 disks, corresponds to
O<R <R,=V3—1 and case (b), where the heap to be
complete needs 6 disks, to the remaining interval
R.=R <1. (This value of R, means that heap (b) is
stable for a <30°, according to the rules given in [2]).
The repose angle, which is a purely geometric factor in
the absence of friction, is defined as the statistical average
of a in case (a) and of 60° in case (b), since then the mean
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value of the linear fitting of the center of the disks lying
on the boundary line of the heap is 1(60°+a+60°—a).

Thus @):fg”w(R)a(R)dR +60°f}zcw(R)dR, where

w(R) is the normalized probability to have a gap of size
R in the random sequential deposition of unit segments
on the line. This car-park problem was solved [3], and, to
be closer to the experimental situation, we construct the
heaps with the gap distribution corresponding to the
jammed configurations of the infinite line. Thus

w(R)=2p, lfo te Rip2qs |
where
t —u
h(t)=exp [—fo[l—e /uldu |,
and
po= [ “h%dt~0.7476
0

is the Renyi density. One then  obtains
®=43.894°+7.79°=51.68°, where we indicate the con-
tributions of cases (a) and (b), respectively. The mean
value of the number of disks in the heap is 3.39.

More generally, we consider statistical heaps with a
fixed number of arbitrary gaps R; on the base line; i.e.,
with a varying number of disks in the whole heap, since
each time one gap in the distribution is greater than R,
new configurations with new added disks appear, with an
increasing number of layers. To each configuration cor-

FIG. 1. The two configurations (a) and (b) of the minimal sta-
tistical heap, according to the value of the basic gap R with
respect to R..
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responds a mean repose angle, used to perform the sta-
tistical average with its proper weight. For example, in
the case of two gaps R and R, there are three classes SS,
SL +LS, and LL, where S stands for short gaps (R; <R_)
and L for large ones. These classes involve, respectively,
six, 10, and 15 disks, with various equiprobable
configurations in the classes where at least one L appears.
We have carried out this geometric enumeration, before
averaging, up to heaps with three gaps and 28 disks at
most.

The remaining task is to obtain the probabilities for the
gap distribution. One can obtain w(R,R,) by solving
the rate equations for an appropriate hierarchic set, in
the spirit of Ref. [4]. We only quote the result

) —t(R;+R,)
Ry ,Ry)=[T1%e "1 2
pow(R,R,) fo e

+H(R,,R,)

(t)dt+H(R,R,)

where
H(R,R,)= fowe”Rluh(u)fouh(v)

Xe _sz(ve‘"-!-[(l—e_z”)/Z])dv du ,

and check that fédsz(Rl,R2)=w(R1). We have to
compute the integrals I,= f édRzH(Rl,Rz) and
I,=[dR,H(Ry,R,). I, is [Fe ““'h(u) [ ig(v)dv du,
where g(v)=hW)[(1—e "?)/2)(ve "+ [(1—e ~2)/2]) is
the derivative of h(w)v—[(1—e %)/2]) since
h'(v)=[(e " "—1)/v]h(v). The result for I, is thus
=2 "Xt —[(1—e~2)/2))dt. Now I, is

S rwta—em/ul [ *hw)

Xe7R'v(ve_"+[(l-e_2")/2])dv du ,

where a change in the order of integrations introduces
J 2h(w)[(1—e™*)/u]du which is h (v). Thus

1 o -
pofo dsz(Rl,R2)=I,+IZ+f0 e Th2Ae)t—te )t
=pow(R,),

which ensures the result. For the three gap probability
we simply make the ansatz L[w(R;)w(R,,R;)
+w(R;)w(R{,R,)], as we have checked that for the ob-
servables we compute in Table I, the results are practical-
ly unchanged when w(R ,R,) is replaced by the approxi-
mation w(R | Jw(R,).

Our results are depicted in Table I, where we detail the
various components of the repose angle, which sum to
~52° in all cases, and the mean value N of the numbers

TABLE 1. Values of the repose angle ® and of the mean
number N of disks for heaps with two and three gaps. The par-
tial values of these quantities, listed in the last two columns,
correspond to the configurations depicted in the second column,
where the numbers of layers appear in parentheses.

Partial Partial
Configuration ® N
two gaps
SS 3) 38.52° 4.566
®=52.00° SL +LS (4) 12.41° 2.196
N =17.05 LL (5) 1.07° 0.291
three gaps
SSS 4) 33.480° 6.622
LSS +SSL (5) 10.715° 2915
SLS (5) 5.256° 1.433
®=51.98° LSL (6) 0.826° 0.299
SLL +LLS (6) 1.568° 0.599
N=11.93 LLL (7) 0.131° 0.061

of disks in the statistical heap. It can be seen from this
table that the LL... configurations are strongly
suppressed as a consequence of the shape of the probabili-
ties w(R;) which diverge for R;=0. These contact singu-
larities, characteristic of the gap distribution at jamming
[5], are here w(R)~ —InR and w(R;,R,)~(R;+R,)™!
+1nR;InR,. The most important contributions thus
arise from the SS. .. configurations, which are the most
highly ordered and not too different from regular ar-
rangements. This observation gives some support to the
estimate of the density made by Perkins [6]: he considers
a regular arrangement corresponding to a constant basic
gap fixed at its mean value (1—py)/py=0.3376. Thus
p=1m/4sin2® with the values ®=48.02° and p=0.7898.
When ®=52° one finds p=0.809 for a regular heap,
which is consistent with our estimate. The uncertainty
we indicate for the density arises mainly from the various
definitions that one may choose for a small heap where
the gaps of the base layer, which are different from those
in the bulk, play an important role. Inclusion of these
gaps in the definition of the density gives =~0.79, ex-
clusion gives =0.82.

As the repose angle is defined unambiguously, we have
concentrated in this work on its exact computation for
some small statistical heaps. We interpret its size in-
dependence as a consequence of the particular nature of
the base layer, where the random sequential deposition
induces a small amount of short-range order [4].

We thank Dr. J. Donohue for his careful reading of the
manuscript.
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